
Project 3: Scheme Interpreter

Contents

1 Project 3: Scheme Interpreter 2
1.1 Checkpoint due Wednesday, Oct 16, 2019 at 8pm . 2
1.2 Final deadline Monday, Oct 21, 2019 at 8pm . 2

2 Checkpoint 2

3 Background 2
3.1 Internal Representations . 3
3.2 Distribution Code . 3

Lexer and Parser . 3
Interpreter Core . 3
Interpreter Driver . 4
Test Harnesses . 4
Test Files . 4

3.3 Command-Line Interface . 5
3.4 Error Detection . 5
3.5 Known Departures from R5RS . 6

4 Phase 0: Parser 6

5 Phase 1: Primitives, Environments, and Evaluation 7
5.1 Environments . 7
5.2 Primitive Procedures . 8
5.3 Evaluating Symbols . 8
5.4 Evaluating Call Expressions . 9
5.5 Implementing Primitive Procedures . 9
5.6 Tests . 9

6 Phase 2: Special Forms 10
6.1 User-Defined Procedures . 10
6.2 Derived Forms . 11

Definitions . 11
Binding Constructs . 11

6.3 Other Forms . 12
6.4 Quotation . 12
6.5 eval Procedure . 12
6.6 Errors . 13
6.7 Tests . 13

7 Phase 3: Tail-Call Optimization 13

8 Phase 4 (Optional): Continuations and call/cc 14

9 Grading 15

1

10 Submission 15

11 Acknowledgments 16

https://amirkamil.github.io/eecs490/project-scheme-interpreter/

1 Project 3: Scheme Interpreter

1.1 Checkpoint due Wednesday, Oct 16, 2019 at 8pm

1.2 Final deadline Monday, Oct 21, 2019 at 8pm

In this project, you will implement an interpreter for a subset of the R5RS Scheme programming language. The main
purpose of this exercise is to gain a deeper understanding of the foundational elements of a programming language
and how a language operates under the hood. Secondary goals are to write a substantial piece of code in Python and
to gain practice with functional language constructs such as recursion and higher-order functions.

The project is divided into multiple suggested phases. We recommend completing the project in the order of the phases
below.

You may work alone or with a partner. Please see the syllabus for partnership rules. As a reminder, you may not share
any part of your solution outside of your partnership. This includes both code and test cases.

2 Checkpoint

Your best submission to the autograder before the checkpoint deadline above must receive at least 30% of the points
on the public and private test cases. Your grade for the checkpoint will be computed as 𝑚𝑖𝑛(0.3, 𝑠𝑐𝑜𝑟𝑒)/0.3, where
𝑠𝑐𝑜𝑟𝑒 is the fraction of points earned by that submission.

3 Background

An interpreter follows a multistep procedure in processing code. In a program file, code is represented as raw character
data, which isn’t suitable for interpreting directly. The first step then is to read the code and construct a more suitable
internal representation that is more amenable to interpretation. This first step can be further subdivided into a lexing
step, which chops the input data into individual tokens, and parsing, which generates program fragments from tokens.
The end result of this reading process is a structured representation of a code fragment.

Once an input code fragment has been read, the interpreter proceeds to evaluate the expression that the fragment repre-
sents1. This evaluation process happens within the context of an environment that maps names to entities. Evaluation
is recursive: subexpressions are themselves evaluated by the interpreter in order to produce a value.

Upon evaluating a code fragment, an interactive interpreter will proceed to print out a representation of the resulting
value. It will then proceed to read the next code fragment from the input, repeating this process.

This iterative combination of steps is often referred to as a read-eval-print loop, or REPL for short. Interactive inter-
preters often provide a REPL with a prompt to read in a new expression, evaluating it and printing the result.

In this project, we have provided you with most of the implementation for the read step, though you will fill in a few
remaining details in Phase 0. Your primary task, however, will be to implement the functionality needed by the eval
step of the interpreter. We have also provided you with an implementation of the print step.

1 An interpreter for an imperative language, such as Python, will execute the code fragment if it represents a statement. Scheme, however, only
has expressions, so the interpreter only evaluates code.

2

http://www.schemers.org/Documents/Standards/R5RS/

3.1 Internal Representations

The parser uses the following representations of Scheme entities:

Scheme Data Type Internal Representation
Numbers Python’s built-in int and float types.
Symbols Python’s built in str type.
Strings Python’s built-in str type, where the first and last characters are the double quotes ".
Booleans Python’s built in True and False.
Pairs The Pair class defined in scheme_core.py.
Empty List The Nil object defined in scheme_core.py.

3.2 Distribution Code

Use the following commands to download and unpack the distribution code:

$ wget \
https://amirkamil.github.io/eecs490/project-scheme-interpreter/starter-files.tar.gz

$ tar xzf starter-files.tar.gz

Start by looking over the distribution code, which consists of the following files:

Lexer and Parser

buffer.
py

Utility classes for processing input. You should not have to change this file, and you do not need to
understand how it works, but you will have to work with Buffer objects and thus you should be
familiar with the current() and pop() methods of the Buffer class.

scheme_tokens.
py

Lexer for Scheme. You should not have to change this file, and you do not need to understand how it
works.

scheme_reader.
py

Parser for Scheme. Most of the parser has been implemented for you, but there are a couple of small
pieces you must complete, indicated by comments.

In completing the parser, you will need to use the Pair class that is defined in scheme_core.py.

Running python3 scheme_reader.py results in an interactive interface that reads in a Scheme expression and
prints out a representation of the expression without evaluating it.

Interpreter Core

scheme_core.
py

The core data structures and logic for the Scheme interpreter. A few basic pieces have been provided
for you; examine this code closely and make sure you understand what each function or class does.
This file is where you will implement most of the project.

scheme_primitives.
py

Primitive Scheme procedures that are defined in the global frame in Scheme. Many procedures have
been implemented for you. Comments indicate where you will need to add or modify code.

Most of the code you write will be in one of these two files.

3

Interpreter Driver

scheme.
py

The top-level driver of the Scheme interpreter, including the read-eval-print loop. You should not have
to change anything unless you choose to implement Phase 4.

An input file can be provided at the command line, as in:

$ python3 scheme.py phase1_tests.scm

This reads in each of the expressions in the given file, evaluates them, and prints out the resulting value.

Alternatively, if no input file is provided, an interactive REPL is run that reads from standard input.

Test Harnesses

scheme_test.
py

Testing framework for Scheme programs. You should not have to change this file, and you do
not need to understand how it works.

Makefile A Makefile for running test cases.

A testing framework for the interpreter is provided in scheme_test.py. The framework takes a Scheme file as a
command-line argument, and it uses your interpreter to evaluate each Scheme expression in the file. If the file contains
a Scheme comment of the form ; expect value, the framework compares the result of the expression to the
expected value. If the output differs, the framework reports that the test failed. See the provided test files for examples,
as well as the documentation at the top of the test harness to see details about its expected input format.

The input file is provided as a command-line argument, as in the following:

$ python3 scheme_test.py phase1_tests.scm

Test Files

phase1_tests.scm Basic tests for Phase 1.
phase2_all_tests.scm Various tests for Phase 2.
phase2_and_or_tests.scm Tests for the and and or special forms.
phase2_begin_tests.scm Tests for the begin special form.
phase2_define_tests.scm Tests for the define special form.
phase2_error_tests.scm Error tests for Phase 2.
phase2_eval_tests.scm Tests for the eval procedure.
phase2_if_tests.scm Tests for the if special form.
phase2_lambda_tests.scm Tests for the lambda special form.
phase2_let_tests.scm Tests for the let special form.
phase2_letstar_tests.scm Tests for the let* special form.
phase2_quote_tests.scm Tests for the quote special form.
phase3_tests.scm Basic tests for Phase 3.
phase4_tests.scm Basic tests for Phase 4.
yinyang.scm The yin-yang puzzle in Scheme, another test for Phase 4.

The provided tests can be run with the given Makefile. It contains the following targets:

• all: run all tests for Phases 0-3

4

https://en.wikipedia.org/wiki/Call-with-current-continuation

• phase0, . . . , phase4: run the tests for an individual phase

• phase2_all, phase2_and_or, . . . : run an individual Phase 2 test, e.g. phase2_all_tests.scm,
phase2_and_or_tests.scm, and so on

3.3 Command-Line Interface

Start the Scheme interpreter with the following command:

$ python3 scheme.py

This will initialize the interpreter and place you in interactive mode. You can exit with an EOF (Ctrl-D on Unix-
based systems, Ctrl-Z on some other systems).

If you pass a filename on the command line, the interpreter will take input from the file instead:

$ python3 scheme.py tests.scm

You can use a keyboard interrupt (Ctrl-C) to exit while a file is being interpreted.

If you use the -load command-line argument followed by Scheme filenames, the interpreter will interpret the code
in the files and then place you in interactive mode in the resulting environment:

$ python3 scheme.py -load tests.scm

If you pass the -e or --fail-on-error command-line arguments, the interpreter will allow exceptions to propa-
gate to the top-level, producing a stack trace that can be useful for debugging:

$ python3 scheme.py -e
scm> ()
Traceback (most recent call last):

File "scheme.py", line 108, in <module>
main()

File "scheme.py", line 104, in main
load_files=args.load)

File "scheme.py", line 25, in read_eval_print_loop
handle_eval_result(result, expression, quiet)

File "scheme.py", line 46, in handle_eval_result
str(expression))

AssertionError: scheme_eval returned None: ()

3.4 Error Detection

Your interpreter should detect erroneous Scheme code and report an error. The read-eval-print loop we provide you
prints an error message when it enounters a Python exception, so it is sufficient to raise a Python exception when you
detect an error. It is up to you what information to provide on an error, but we recommend providing a message that is
useful for debugging.

5

3.5 Known Departures from R5RS

For simplicity, we depart from the Scheme standard in several places. The following is an incomplete list of discrep-
ancies between our implementation and R5RS:

• We do not support vectors or characters.

• There is a large set of standard procedures and forms that we do not implement.

We do not support rational or complex numbers, which are optional in R5RS.

Though it is not required by the R5RS spec, your implementation must evaluate arguments to a procedure call in
left-to-right order.

4 Phase 0: Parser

Fill in the missing pieces of the Scheme parser in scheme_reader.py.

• Modify scheme_read() to properly handle quotation markers. In particular, a single quote followed by an
expression should result in a new expression that applies the quote special form to the following expression:

'(1 2) --> (quote (1 2))

Your parser must also properly handle quasiquotation and both types of unquoting, though your Scheme inter-
preter is not required to support them. Refer to the Scheme documentation for the syntax of quasiquotation
and unquoting. You will also find some tests in the docstring for scheme_read() that illustrate the expected
behavior of the function.

• Modify read_tail() to support dotted pairs. Again, refer to the Scheme documentation for their syntax.

The argument to read_tail() is an instance of the Buffer class defined in buffer.py. You will need to
use the current()method, which returns the current input token in the buffer, and pop(), which removes the
current input token and returns it. (Note that the buffer discards whitespace, since whitespace is not considered
an input token.) You should not have to use anything else in buffer.py.

If more than one item appears after the dot, raise an exception as follows:

raise SyntaxError('Expected one element after .')

You can determine that there is only one item after the dot by reading the next expression and then making sure
that the following item in the buffer is the closing parenthesis ')'.

There are several tests in the docstring for read_tail() that you can look at as examples.

When you are finished, execute the following from the command line to run the integrated doctests:

$ python3 -m doctest -v scheme_reader.py

Alternatively, use the Makefile to run the doctests (this leaves out the -v flag):

$ make phase0

This will run each of the tests in the docstrings for scheme_read() and read_tail() and compare the output
to the expected output contained in the docstrings.

You will also be able to start an interactive prompt where you can type in Scheme expressions to be parsed:

6

http://www.schemers.org/Documents/Standards/R5RS/
http://www.schemers.org/Documents/Standards/R5RS/
https://docs.python.org/3/library/doctest.html

$ python3 scheme_reader.py
read> '(hello world)
(quote (hello world))
read> (1 . 2)
(1 . 2)
read> (1 . (2 3))
(1 2 3)
read> (1 . 2 3)
SyntaxError: Expected one element after .

You can exit with an EOF (Ctrl-D on Unix-based systems, Ctrl-Z on some other systems) or with Ctrl-C.

5 Phase 1: Primitives, Environments, and Evaluation

In this phase, you will implement basic features of the Scheme interpreter. Once this phase is complete, your interpreter
should be able to evaluate basic Scheme expressions consisting of calls to primitive procedures, as well as compound
expressions composed of these basic elements.

5.1 Environments

An environment consists of a sequence of frames, each of which binds names to values. Design and implement a
representation for environments. Place this code in scheme_core.py, and fill in the create_environment()
function that creates an environment with a single empty frame.

Your environment type must support the following methods:

• __getitem__(self, name): returns the object to which name is bound in the given environment. If
name is not bound in the environment, an exception is raised.

• __setitem__(self, name, value): binds name to value in the last frame in the given environment.
If name is already bound in that frame, the old binding is replaced with this new one.

• __contains__(self, name): returns whether or not name is bound in the given environment.

• extend(self): returns a new environment that has the same frames as the original environment plus an
additional empty frame.

You may find the Python dict type useful for representing frames. When you look up a name in an environment, you
will need to examine the frames in order from last to first, returning the first binding that you find.

The extend() method must avoid copying frames from the existing environment: a modification to a frame that is
shared by multiple environments is reflected in all of them. Thus, a shared frame must be represented by the same
object in the environments that share the frame. You should be able to rely on Python’s reference semantics to avoid
copying frames.

The docstring for create_environment() has doctests for environments. Run them with:

$ python3 -m doctest -v scheme_core.py

7

5.2 Primitive Procedures

Next, modify the primitive() and add_primitives() functions in scheme_primitives.py as needed
so that primitive procedures are added to the global frame when the Scheme interpreter is started.

The primitive() function is a higher-order function intended to be used as a decorator, as in the following:

@primitive('boolean?')
def scheme_booleanp(x):

return x is True or x is False

This is largely equivalent to the following:

def scheme_booleanp(x):
return x is True or x is False

scheme_booleanp = primitive('boolean?')(scheme_booleanp)

To make this work, primitive() takes in a sequence of names and returns a decorator function. The decorator
function takes in a Python function, and for each name that was passed to primitive(), it needs to add an object
representing a Scheme primitive with the given name and the given Python function as its implementation to the
_PRIMITIVES list. In the example above, a Scheme primitive with the name boolean? and implementation
scheme_booleanp() should be added to _PRIMITIVES.

In order for this to work, you will have to come up with a representation of Scheme primitives that keeps track
of the name and implementation of a primitive procedure. We recommend packaging this into an object that is a
subtype of the provided SchemeExpr, and to place this code in scheme_core.py. You will need to override the
is_procedure() method to return true for objects that represent primitive procedures.

5.3 Evaluating Symbols

The interpreter code we provide can evaluate primitive values (e.g. numbers and strings), as you can see by examining
scheme_eval() in scheme_core.py. The scheme_eval() function is the evaluator of the intepreter. It
takes in a Scheme expression, in the form produced by the parser, and an environment, evaluates the expression in the
given environment, and returns the result.

You can start the interpreter and type in primitive values, which evaluate to themselves:

$ python3 scheme.py
scm> 3
3
scm> "hello world"
"hello world"
scm> #t
#t

Modify scheme_eval() to support evaluating symbols in the current environment. This will allow you to evaluate
symbols that are bound to primitive functions:

scm> =
[primitive function =]

The interpreter printout is dependent on your implementation, and you can implement the special __str__()method
for your representation of primitives to produce the output you want. You do not have to match the output above.

If a symbol is undefined in the environment when it is evaluated, raise a Python exception, using code such as the
following:

8

raise NameError('unknown identifier ' + name)

This will be caught by the Scheme read-eval-print loop, and its message will be reported to the user:

scm> undefined
Error: unknown identifier undefined

5.4 Evaluating Call Expressions

Design and implement a process for evaluating Scheme expressions consisting of lists, enabling evaluation of proce-
dure calls. Place this code in scheme_core.py. Modify scheme_eval() as necessary to run this code when it
encounters a list.

A list is evaluated by evaluating the first operand. If the result is a Scheme procedure, then the remaining operands are
evaluated in order from left to right, and the procedure is applied to the resulting argument values. Special forms have
a different evaluation procedure, which we will see in subsequent phases.

If a list is ill-formed (i.e. it does not end with the null list), or if the first operand does not evaluate to a Scheme
procedure (or special form in the later phases), your interpreter should raise an exception.

You will need to implement support for applying a primitive procedure to its arguments. This should allow you to
evaluate expressions such as:

scm> (boolean? #t)
#t
scm> (not #t)
#f
scm> (+ 1 2 3)
6

5.5 Implementing Primitive Procedures

Implement the remaining primitive procedures (except eval) in scheme_primitives.py. Check the comments
for what procedures need to be added, and what their behavior should be. See the implementation of similar procedures
for hints on how to write them.

Defer implementation of eval until Phase 2, since you will not be able to test it until you have implemented the
quote special form.

For apply, make sure to raise an exception if the first argument does not evaluate to a Scheme procedure, or if the
last argument is not a list.

5.6 Tests

When this phase is complete, you will be able to run the provided tests for the phase:

$ make phase1

Alternatively:

$ python3 -m doctest scheme_core.py
$ python3 scheme_test.py phase1_tests.scm

Make sure to write your own tests as well, as only a few tests are provided for you.

9

6 Phase 2: Special Forms

Extend the evaluation procedure in your interpreter to handle special forms, and implement the special forms below.
Except where noted, their behavior should match that in the Scheme specification. Your code to implement this phase
should be placed in scheme_core.py.

You will need to come up with a representation for special forms that keeps track of the name of the form and its
implementation in Python. This is analagous to the representation of primitive procedures in Phase 1. Specifically, we
recommend the following:

• Implement a special form as a Python function.

• Define a class for special forms that keeps track of the name and the Python function that implements the form.
Override is_special_form() to return true for an object of this class.

• Write a decorator for special forms that is similar to the primitive decorator in the starter code.

• Modify scheme_eval() such that if the first subexpression of a call expression evaluates to a special form,
the Python function for handling that special form is called. You will need to pass both the remainder of the call
expression and the current environment to this function.

In standard R5RS Scheme, symbols that represent special forms are not reserved. Thus, it is possible to define a
variable with the name if, define, etc. Your interpreter should allow this behavior by defining special forms in the
global frame and allowing their names to be redefined in both the global frame and in child frames. You will need to
complete the add_special_forms() function that will install the special forms in the given environment.

6.1 User-Defined Procedures

A user-defined procedure can be introduced with the lambda special form. You will need a representation of a
user-defined procedure that keeps track of the definition environment (since Scheme procedures are statically scoped),
the parameter list, and the body of the procedure. We recommend defining a subclass of SchemeExpr that repre-
sents user-defined procedures. You will need to override the is_procedure() method to return true for an object
representing a primitive or user-defined procedure.

You only have to implement lambdas that take a fixed number of arguments (the first form mentioned in Section
4.1.4 of the Scheme spec).

Evaluating the lambda expression itself requires the following:

• Check the format of the expression to make sure it is free of errors. Refer to the R5RS spec for the required
format and what constitutes an error.

• Create an object representing a user-defined procedure. Save a reference to the definition environment, the list
of parameters, and the body of the lambda in this object.

• The resulting value of the lambda expression is the newly created procedure object.

You will also need to add support for applying a user-defined procedure to an argument list. More specifically,
scheme_eval() will need to properly handle call expressions where the first subexpression evaluates to a user-
defined procedure. The process for applying a user-defined procedure is as follows:

• Evaluate the argument expressions in order from left to right.

• Check that the number of arguments matches the number of parameters required by the procedure.

• Create a new environment that extends the definition environment by a single empty frame. Use the extend()
method of an environment to do so.

• Bind the parameter names to the argument values within the context of the newly created frame.

• Evaluate the body in the context of the new environment.

10

http://www.schemers.org/Documents/Standards/R5RS/

Raise a Python exception if an error is detected in either defining or applying a user-defined procedure.

6.2 Derived Forms

The following forms can be implemented by translating them to simpler forms. Do not repeat yourself! If a translation
is possible, construct the translated expression and evaluate that rather then repeating code.

Definitions

You are required to implement the first two forms for define listed in Section 5.2 of the R5RS spec.

• The first form binds a variable to the value of an expression. You will need to evaluate the expression in the
current environment and bind the given name to the resulting value in the current frame. This form cannot be
translated into a simpler form.

• The second form defines a function. You only have to handle a fixed number of parameters, so you need not
consider the case where the formals contain a period. Make use of the equivalence mentioned in the Scheme
spec. Construct the lambda expression by appropriately using the Pair class, evaluate it, and bind the variable
to the result.

You do not have to check that define is at the top level or beginning of a body. For this project, the define form
should evaluate to the name that was just defined:

scm> (define x 3)
x
scm> (define (foo x) (+ x 1))
foo

Binding Constructs

Implement the let form, described in Section 4.2.2 of the Scheme spec. Use the following translation to a lambda
definition and application:

(let ((𝑛𝑎𝑚𝑒1 𝑒𝑥𝑝𝑟1)

...

(𝑛𝑎𝑚𝑒𝑘 𝑒𝑥𝑝𝑟𝑘))

𝑏𝑜𝑑𝑦)

=⇒
((lambda (𝑛𝑎𝑚𝑒1 ... 𝑛𝑎𝑚𝑒𝑘) 𝑏𝑜𝑑𝑦)

𝑒𝑥𝑝𝑟1 ... 𝑒𝑥𝑝𝑟𝑘)

You do not have to implement the “named let” form described in Section 4.2.4.

Also implement the let* form from Section 4.2.2. This can be translated to let using the following recursive rules:

• Base case: if there are no bindings or only one, then let* is equivalent to let. Thus:

(let* () 𝑏𝑜𝑑𝑦) =⇒ (let () 𝑏𝑜𝑑𝑦)

(let* ((𝑛𝑎𝑚𝑒 𝑒𝑥𝑝𝑟)) 𝑏𝑜𝑑𝑦) =⇒ (let ((𝑛𝑎𝑚𝑒 𝑒𝑥𝑝𝑟)) 𝑏𝑜𝑑𝑦)

11

http://www.schemers.org/Documents/Standards/R5RS/

• Recursive case: if there are two or more bindings, then the first is moved to its own let, whose body becomes
the let* minus its first binding:

(let* ((𝑛𝑎𝑚𝑒1 𝑒𝑥𝑝𝑟1)

(𝑛𝑎𝑚𝑒2 𝑒𝑥𝑝𝑟2)

...

(𝑛𝑎𝑚𝑒𝑘 𝑒𝑥𝑝𝑟𝑘))

𝑏𝑜𝑑𝑦)

=⇒
(let ((𝑛𝑎𝑚𝑒1 𝑒𝑥𝑝𝑟1))

(let* ((𝑛𝑎𝑚𝑒2 𝑒𝑥𝑝𝑟2)

...

(𝑛𝑎𝑚𝑒𝑘 𝑒𝑥𝑝𝑟𝑘))

𝑏𝑜𝑑𝑦)

)

6.3 Other Forms

Implement the following standard forms. Refer to the R5RS spec for their semantics.

• begin: This does not introduce a new frame, so you cannot translate this to a lambda.

• if: If the test yields a false value and there is no alternate, then the conditional should evaluate to the predefined
Okay object.

• and

• or

6.4 Quotation

Implement the quote form, which merely returns its argument without evaluating it. You do not have to implement
quasiquote, unquote, or unquote-splicing.

6.5 eval Procedure

Implement the procedure eval in scheme_primitives.py:

(eval expression environment)

where expression is a valid Scheme expression represented as data and environment is an environment object that re-
sulted from a call to scheme-report-environment or null-environment. This should evaluate expression
in the given environment. The following are some examples:

scm> (eval '(+ 1 3) (scheme-report-environment 5))
4
scm> (define env (scheme-report-environment 5))
env
scm> (eval '(define x 3) env)
x
scm> (eval 'x env)
3

(continues on next page)

12

http://www.schemers.org/Documents/Standards/R5RS/

(continued from previous page)

scm> (eval '(+ 1 x) env)
4

Make sure to raise an exception if the second argument to eval is not an environment.

6.6 Errors

We recommend translating special forms to more fundamental equivalents where possible, to simplify the tasks of
error checking and of implementing continuations in the optional Phase 4.

Your implementation of each special form must check for errors where appropriate and raise a Python exception if an
error occurs. Examples of errors include a variable definition that is provided more than one expression, a definition
with an improper name, a procedure with multiple parameters with the same name, an ifwith less than two arguments,
and so on. Specific examples of these:

(define x 3 4)
(define 4 5)
(lambda (x y x) 3)
(if #t)

Refer to the Scheme documentation for what constitutes erroneous cases for each special form.

6.7 Tests

When this phase is complete, you will be able to run the provided tests for the phase:

$ make phase2

You can also run an individual test file for this phase, as in the following:

$ make phase2_begin

Make sure to write your own tests as well.

7 Phase 3: Tail-Call Optimization

Scheme implementations are required to be properly tail-recursive, and they must perform tail-call optimization where
possible. We recommend you initially implement your interpreter without tail-call optimization. Once you have the
core functionality implemented, you can then restructure your interpreter to support tail-call optimization. You must
support it in all contexts required by the Scheme specification.

Proper tail recursion requires that your interpreter use a constant number of active Scheme frames for tail-recursive
procedures, meaning that the sizes of the environments in scheme_eval() remain constant. It is not necessary for
your interpreter to reuse Scheme frames; instead, it is sufficient to ensure that frames that are no longer needed are
garbage collected, so that the overall space usage remains constant.

In addition, your Scheme interpreter must use a constant amount of memory in the Python interpreter itself – it cannot
recursively call scheme_eval() in tail contexts, since such a call creates an additional Python stack frame. Instead,
you will need to iteratively evaluate tail expressions rather than recursively calling scheme_eval(). You will need
to do the following to accomplish this:

• Define a class that encapsulates a tail expression with its environment.

13

• Instead of calling scheme_eval() from a tail context of a special form, return an object representing the tail
expression and its environment.

• Modify scheme_eval() to handle tail expressions. Evaluation will need to be performed in a loop, and en-
countering a tail expression should repeat the loop with the expression and environment extracted from the tail-
expression object. On the other hand, if the result of evaluation is not a tail expression, then scheme_eval()
should return that result.

These actions should be done on any expression that is noted as a ⟨tail expression⟩ in Section 3.5 of the R5RS spec,
regardless of whether or not the expression is a procedure call.

You will still need to recursively call scheme_eval() in non-tail contexts.

When this phase is complete, you will be able to run the provided tests for the phase:

$ make phase3

Without tail-call optimization, your interpreter will encounter a RecursionError on this test due to the recursive
calls to scheme_eval(). Once you’ve implemented tail-call optimization, the test should work correctly.

Make sure to write your own tests to ensure that tail-call optimization is applied in all required contexts.

8 Phase 4 (Optional): Continuations and call/cc

This phase will require you to modify scheme.py. As such, if you choose to implement it, we recommend
making the required modifications in a separate copy of your project, such as a separate branch if you are
using git.

A Scheme feature you may implement is continuations, along with the call-with-current-continuation
special form. In addition, support the call/cc shorthand for call-with-current-continuation. For this
phase, do not implement values, call-with-values, or dynamic-wind.

A continuation represents the entire intermediate state of a computation. When you encounter call/cc, your inter-
preter will need to record the current execution state. This will require backtracking through the execution stack and
packaging up the state at each point in a format that will allow you to reconstruct the execution stack whenever the
continuation is invoked.

When you build a continuation, the actual call to call/cc needs to be replaced by a “hole” that can be filled in when
the continuation is invoked. When a continuation is invoked, you should not repeat any computations that have been
completed. Thus, the continuation for

(begin (display 3) (+ 2 3) (+ 1 (call/cc foo)) (- 3 5))

should conceptually represent

(begin (+ 1 <hole>) (- 3 5))

where the hole is filled in when the continuation is invoked.

After building a continuation, you should immediately resume the newly built continuation, with the hole filled in with
a call to the target of the call/cc and the continuation object as its argument. In the example above:

(begin (+ 1 (foo <continuation>)) (- 3 5))

A continuation object can be invoked an arbitrary number of times. It must take a single argument when it is invoked,
such as:

14

(<continuation> 2)

When a continuation is invoked, the interpreter must abandon the current executation state and resume the invoked
continuation instead. The argument of the continuation object fills the hole in the continuation:

(begin (+ 1 2) (- 3 5))

Abandoning the current execution state requires unwinding the current computation until you reach the read-eval-print
loop. (You should support an unbounded number of continuation invocations, so it is not acceptable to recursively call
the read-eval-print loop.) Consider using a Python exception to facilitate abandoning the execution state. Once that is
done, resume the computation represented by the invoked continuation.

When this phase is complete, you will be able to run the provided tests for the phase:

$ make phase4

You will also be able to run the yin-yang puzzle as follows:

$ python3 scheme.py yinyang.scm

Since this phase is optional, it will not be graded, and it will not be tested on the autograder. Regardless of whether
you complete this phase, we recommend turning in a copy of your project that does not contain this phase.

9 Grading

The approximate grade breakdown for this project is as follows:

• 20% checkpoint

• 70% final deadline autograded

• 10% final deadline hand graded

Hand grading will evaluate the comprehensiveness of your test cases as well as your programming practices, such as
avoiding unnecessary repetition. In order to be eligible for hand grading, your solution must achieve at least half the
points on the autograded, final-deadline portion of the project.

You are required to adhere to the coding practices in the course style guide. We will use the automated tools listed
there to evaluate your code. You can run the style checks yourself as described in the guide.

10 Submission

All code that you write for the interpreter must be placed in scheme_reader.py, scheme_primitives.py,
or scheme_core.py. We will test all three files together, so you are free to change interfaces that are internal to
these files. You may not change any part of the interface that is used by scheme.py or scheme_test.py.

Submit scheme_reader.py, scheme_primitives.py, scheme_core.py, and any of your own test files
to the autograder before the deadline. We suggest including a README.txt describing how to run your test cases.

15

https://en.wikipedia.org/wiki/Call-with-current-continuation
https://amirkamil.github.io/eecs490.org/style.html

11 Acknowledgments

This project is based on the Scheme interpreter project in the Composing Programs text by John DeNero.

16

http://composingprograms.com

	Project 3: Scheme Interpreter
	Checkpoint due Wednesday, Oct 16, 2019 at 8pm
	Final deadline Monday, Oct 21, 2019 at 8pm

	Checkpoint
	Background
	Internal Representations
	Distribution Code
	Lexer and Parser
	Interpreter Core
	Interpreter Driver
	Test Harnesses
	Test Files

	Command-Line Interface
	Error Detection
	Known Departures from R5RS

	Phase 0: Parser
	Phase 1: Primitives, Environments, and Evaluation
	Environments
	Primitive Procedures
	Evaluating Symbols
	Evaluating Call Expressions
	Implementing Primitive Procedures
	Tests

	Phase 2: Special Forms
	User-Defined Procedures
	Derived Forms
	Definitions
	Binding Constructs

	Other Forms
	Quotation
	eval Procedure
	Errors
	Tests

	Phase 3: Tail-Call Optimization
	Phase 4 (Optional): Continuations and call/cc
	Grading
	Submission
	Acknowledgments

